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Abstract 

 

The evolution of the manufacturing processes in the semiconductor industry are pushing the 

limits of physics every new technology generation. This growth represents a larger number of 

transistors per square inch in every generation. Today the predominant design style is 

synchronous design with complementary metal-oxide-semiconductor being the manufacturing 

standard. But, within the present decade, some of fundamental limits of physics are going to 

be reached. Thus, the manufacturing companies are always searching novel ways to overcome 

the rapid incoming challenges in the manufacturing technologies, e.g. transistor leakage in 

submicron processes and minimum transistor length limit. Even though there are many 

talented engineers, physicists and chemists, those limits are becoming more challenging every 

new manufacturing generation. Thus, new design styles appear as possible solutions, such as 

asynchronous circuits. However, this design style is still not mature enough in the market. 

There are some practical aspects that makes this style not attractive for design houses. For 

instance, asynchronous circuits have a higher timing requirement for verification and testing 

since they may have many timing assumptions that must be understood by the designers and 

well covered by verification tools. Therefore, the present thesis is going to focus in 

asynchronous circuits verification through the design of an environment for random wire and 

gate delays. This work will present a simulation framework built on top of SystemC that 

models asynchronous designs, where components of the design are mapped to a thread and 

are assigned to a delay value for each round of simulation. The logic functions of the design 

are verified with a predefined testbench, then the results are compared against the expected 

behavior to ensure the model remains working though the environment changes its 

characteristics. To perform the verification, the testbench runs the model many times with 

different delays for gates and wires, considering some limits in the operating conditions. The 

case study chosen for this thesis is a pipeline controller based on fundamental mode 

assumptions where the testbench will apply new input values to the controller just after its 

internal state has stabilized. The controller output logic functions are decomposed in gate 

networks that are mapped to SystemC modules. For each module, the inner components, 

including wire connections, are mapped into SystemC threads. The controller is simulated and 

a testbench representing a pipeline test is executed generating stimulus for the design. In the 

end, the testbench reports system measures and whether the design has passed or failed due to 

variability of the operating conditions. 

 

Keywords: Delay Variation Model, Asynchronous Circuits, Huffman Circuits, Timing 

Analysis, Verification. 

 

 

 

 

 

 

 

 



 

Resumo 

 

A evolução no processo de manufatura de semicondutores vem forçando os limites 

conhecidos da física ao extremo, a cada nova geração. Essa evolução representa um aumento 

significativo de transistores em uma única pastilha de silício. Hoje em dia, a técnica mais 

difundida de manufatura de circuitos usa Óxido-Metal Semicondutor Complementar, porém 

nas próximas gerações de semicondutores essa técnica irá enfrentar dificuldades pois alguns 

limites fundamentais da física serão alcançados. Portanto, as empresas de manufatura estão 

constantemente buscando novas técnicas para vencer os desafios do limite da física que os 

novos processos vem introduzindo, como o "vazamento" de potência em processos 

submicrometro e o tamanho mínimo de largura do canal de um transistor. Embora muitos 

engenheiros brilhantes existem, esses limites fundamentais serão alcançados em breve. 

Portanto, novos estilos de projeto são considerados como uma possível evolução. Entre eles 

estão os circuitos assíncronos. Hoje em dia, essa metodologia de circuitos ainda não ganhou 

adesão entre projetistas e empresas de projeto pois eles possuem maiores requisitos para a 

verificação funcional pois esses circuitos precisam ser bem planejados para que não tenham 

pressupostos temporais errados.  Nesse contexto a solução apresentada nesse trabalho entra  

como uma possível ferramenta de suporte, onde o foco será a verificação de circuitos 

assíncronos com atrasos em portas lógicas e em fios de uma maneira não determinística. Este 

trabalho apresenta o desenvolvimento de um arcabouço baseado na biblioteca de classes 

SystemC. Cada componente do projeto será mapeado em threads em SystemC e terá um 

atraso variável. Uma vez que o projeto está verificado, os resultados são comparados com os 

resultados esperados para garantir que o protocolo é funcional mesmo com atrasos não 

programados. Para executar essa verificação o ambiente irá rodar o modelo do circuito muitas 

vezes, atribuindo novos atrasos a cada nova rodada. O caso de estudo escolhido para ser 

verificado com o ambiente proposto é um controlador de pipeline que usa pressupostos 

temporais em portas lógicas e fios. Uma vez que o circuito é gerado, cada um de seus 

componentes vai ser mapeado como um processo em SystemC. A partir do modelo em 

SystemC o controlador é simulado em um ambiente que representa uma pipeline em execução 

gerando estímulos para o projeto. No final da verificação o ambiente de simulação irá reportar 

as métricas do sistema e se o controlador passou ou não no teste. 

 

Palavras-Chave: Modelo de Variação de Atrasos, Circuitos Assíncronos, Circuitos de 

Huffman, Análises Temporais, Verificação. 
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1 INTRODUCTION 

In 1958, the first integrated circuit (IC) was built at Texas Instruments with only two 

transistors. Almost six decades past that, the humankind is presenting ICs containing over 10 

billion transistors. The increase in transistor count from 2 to 10
9 

have been led by the 

incredible advance in the semiconductor industry that evolved from vacuum tubes to solid 

cold metal structures that enabled a large miniaturization of the basic building block of 

electronic designs, named transistor (WESTE et al, 2010). 

 When analysing the rapid evolution in semiconductors manufacturing process, 

performance, power and price go within the same direction. Since transistors become smaller, 

they have less capacitance, which means they become faster, dissipating less power, using 

less die area and less metal volume that leads to a cheaper production (WESTE et al, 2010). 

 The constant improvement in ICs helps the people to connect and share the knowledge 

faster and cheaper in every new technology node. The knowledge and information that are 

acquired in new technologies are then used to design and produce improvements in the 

current technology, making even faster applications.  

Gordon Moore has observed this behavior and in 1965 pronounced that the number of 

transistors would double every 18 months. This is known as Moore’s Law. The ongoing 

reduction supports the increasing of the number of transistors on a single die, enabling them 

to integrate complex system for example in system-on-chip (BEEREL et al, 2010). 

In recent decades there is a predominant manufacturing technology among different 

market suppliers such as Intel, TSMC and MOSIS. This technology is called complementary 

metal-oxide-semiconductor (CMOS). Within CMOS, a design style that is well spread is 

known as synchronous design the relies on a global clock signal to dictate the next state 

changes. 

Even though, CMOS technology uses little power within a single transistor in the 

switching process, the large number of transistors switching at high frequencies have made 

power consumption one of the designer’s major concern. Besides, power, delay and 

performance tradeoffs are arising in early technologies, smaller than 45 nm. 

In addition, increasingly process, voltage and temperature (PVT) variations make the 

power and timing analysis of electronic design a much more complex task (BEEREL et al, 

2010). 
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Therefore, new design styles are being considered as part of a new technology 

advance for the next generations of application specific integrated circuit (ASIC) designs. One 

of the design styles that is become popular within the academia is the asynchronous circuit 

design style. Asynchronous circuits change the delay model of the next state logic compared 

to synchronous designs. Where the design no longer has a global signal controlling the data 

that flows in the design.  

1.1 Motivation 

It was previously shown that asynchronous design is an option for dealing with the 

rapid evolution of the manufacturing technologies and increase of process variations that 

electronic designers should be aware of.  

In addition, the design and technology do not need to have any sort of variation 

concern to chose asynchronous circuits as the design to be adopted. There are many positive 

aspects of asynchronous that the design team could consider as part of decision process of 

implementing a system. 

However, asynchronous design does not mean that the process variations would no 

longer be a hazard for the design. Environmental variations may lead to delay variations that 

may lead to circuit malfunction. It does not depend whether the design is synchronous or 

asynchronous.  

Consider the circuit depicted in Figure 1a. It represents a circuit that implements the 

behavior of the top module shown in Figure 1b that is a controller. 

The controller has only two functions, it tells to the left (right) channel that the right 

(left) channel is ready. The name active/active means that the controller is responsible for the 

first event on either channel. The output ports x and y are the channels that the controller 

sends the requests and the input ports a and b are the response channels. 
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Figure 1 - Problem specification. 

 

 
Source: MYERS, C. J. 

 

Suppose the following scenario: 𝑥 ↑  𝑎 ↑ 𝑥 ↓  𝑎 ↓ 𝑦 ↑. Then, consider 𝑏 ↑. After the 

inverter (INV) that follows b there is a wire fork between s1 and s2. Consider that s1 has a 

negligible delay compared to s2.  

What shall happen is that the AND gate connected to s1 will see a low level being 

presented at its port A. Thus, it is going to output 0 to the OR gate that is responsible for the 

feedback. At this time the OR gate has both of its input ports at a low level. Therefore, it 

produces a low level signal at the output port.  

Once the feedback is low, the wire s3 will be at a high logic level at this point s2 is 

still high, because it has a greater delay than s1, that behavior would output 1 at the x port. 

Then the signal s2 finally falls to its expected behavior and x goes settles to 0. 

Even though the left channel is again at the state it should be, there was a catastrophic 

disorder at the system that was caused by the wire delays. The delay in s2 led to a glitch at the 

output port x. This represents a behavior that was not expected, since the right channel is still 

accomplishing its communication.  

A possible correction for this design is to add a minimum delay requirement for the 

feedback path that would cause the feedback to happen just after the internal wires have 

stabilized their states.  

The previous example has shown that delays may lead to malfunctions in 

asynchronous designs. Differently of synchronous designs, where a clock signal is controlling 

the transitions and when the next state changes would happen, asynchronous circuits having a 
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design that is not well planned and verified in regards to its internal delays may lead to 

malfunctions as shown in the previous example.  

In asynchronous a glitch is catastrophic, since it means a new request for a new 

communication that may never happen and may lead to a complete deadlock of the 

communication protocol. 

Therefore, having those glitches and delay assumptions, require a deep understanding 

of the environment as well as the internal logic of an asynchronous circuit. Adding the delay 

elements or making the calculations of cell drivers to meet the timing requirement for a 

specific design might be a hard and tedious task. Nowadays many research groups created 

different implementations for generating the delays and circuits without hazards (BROWN et 

al, 1988). 

Even though the tools have the ability for generating the circuitry with matching 

delays and well covered logic, in the Real World the timing may vary according to PVT.  

At this point, it would be handful to have a verification environment that would model 

the asynchronous circuit’s gates and wires delays and run a dynamic timing analysis that 

would comprise a portion of the possible set of timing variations that could happen within a 

circuit.  

This leads to our proposed verification environment that generates random gate and 

wire delays to simulate variations that could lead to malfunctions. 

The timing analysis tool has an instance of the asynchronous design and for each gate 

and wire a thread would be executed. At the execution time, upper and lower bound delays for 

each component would be generated. 

The idea is to develop a new approach for the verification of asynchronous circuits by 

creating an environment that allows designers to simulate the system using random delays for 

each gate in a netlist for a period of time that will cover a good portion of the design. This 

environment for asynchronous verification is a new approach for optimizing timing 

constraints verification.  

The environment would ensure that the timings in the design would be tested with a 

great coverage and the gates would behave, regarding delays, randomically.  

The current thesis aims to implement this timing verification environment for the 

varying delays of gates and wires to ensure the asynchronous design has no glitch or any other 

sort of hazard that could compromise the entire system. 
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Figure 2 shows the proposed environment. In this work we are going to show and 

explain how we have generated the case study, Asynchronous Pipeline Controller, and how 

we have modeled it using SystemC. In addition it is explained how the verification 

environment works. 

In summary, the environment runs on top of a verification framework that consists of 

different scripts and a SystemC simulator that is used to describe the hardware and produce 

the timing analysis. 

Each design runs for a predefined number of rounds. Within each round new varying 

delays are generated for wires and gates. The simulations places the controller in a pipelined 

environment that has two mode of operation, the least concurrent and and the most 

concurrent. Once the simulation is completed, it prints whether the controller works or not 

regarding the delays. 

If the circuit does not show the expected behavior it prints the error messages to a log 

file that represents the malfunctions it has experienced in the simulation stage.  

Once we have the output information from the simulation we could specify lower and 

upper bound delays for each gate and wires, in order for preventing glitches with the PVT 

variations.  

The details of how we have designed the case study, the simulation environment and 

how everything is connected is explained later in this thesis. 

 

Figure 2 - Proposed verification environment. 

 

 
Source: BUTZKE, F.S. 
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1.2 Objectives 

A. Implement a simulation environment. 

This is the main goal of the thesis. We shall design a simulation environment that 

models asynchronous circuits in a way that each single component can have a unique delay 

and acts like a thread. 

B. Define a case study. 

The second goal is to define a case study that will be modeled and verified by the 

developed environment. 

C. Verify a case study using the proposed environment. 

This goal refers to the connection of the objectives A and B. Once we have both 

defined we start the verification phase. 

1.3 Organization of Thesis 

This thesis is divided into eight sections. Following the introductory section, the 

Literature Review is shown in Section 2. It presents some basic concepts and fundamentals of 

Synchronous Design, Asynchronous Design, hazards and a SystemC overview. Section 3, 

Related Works, presents the related works that the authors have found in the research for the 

realization of this thesis. Section 4, is the Case Study. It shows the case study development 

that is to be verified by the developed environment. Section 5 presents the Timing 

Verification Environment. This section represents the main contribution of the this thesis. 

Section 6 shows the results and a discussion about them. Section 7 is the conclusion. Finally, 

the Section 8 are the final thoughts. 
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2 LITERATURE REVIEW 

In this section we introduce the fundamentals of asynchronous circuits such as 

handshake templates, flow tables and asynchronous finite state machines (AFSM). 

Additionally, we present a review of static and dynamic hazards and in the last subsection we 

present the basic concepts of SystemC. 

 

2.1 Synchronous Background 

We are going to start with a review of synchronous design. Before moving to 

asynchronous design, we recall what the synchronous design represents. In synchronous 

design, the FSM is guided by the clock signal. In large designs, it can be distributed using 

clock trees, or, to be split creating different clock pools inside the design (FURA, 

1988)(MELY, 2000).  

The clock signal allows the combinational network to be designed between registers, 

in which are usually FFs (MYERS, 2001). Figure 3 depicts a typical synchronous next state 

logic design. In this design, the combinational network may compute the data in its input,  

producing the output a period of time before the clock signal. Thus, the synchronous designs 

constraints the clk pulse in order to ensure that the data produced by the logic network is 

valid. 

 

Figure 3 - Next state logic in synchronous designs. 

 
Source: BUTZKE, F.S. 
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Beerel (2010) says, 

Synchronous design has been the predominant design methodology, largely 

because of the simplicity and efficiency provided by the global clock. The 

register decompose the design into blocks of combinational logic between 

registers which facilitate efficient designs and synthesis. Probably, the time-

to-market advantage of std-cell-based ASIC designs being is one of the 

powerful benefits of synchronous. 

 

2.2 Asynchronous Circuits Fundamentals 

Figure 4 presents the next state logic for asynchronous designs. Instead of having state 

holding elements, e.g. FFs, this sort of design has delays in the feedback loop. The feedback 

creates the state holding requirement for building the Asynchronous Finite State Machine 

(UNGER, 1969). 

 

Figure 4 - Next state logic in asynchronous designs. 

 
Source: BUTZKE, F.S. 

 

The only synchronism needed is that the feedback should match the delay of the 

combinational network to not feedback before the internal states have stabilized. AFSMs are 

input based, as soon as they see an input event, they start changing the current state to a new 

state. 

 

2.2.1 Pipelines 

A simple overview of how the replacement of synchronous designs by asynchronous 

is shown in Figure 5. Figure 5a represents a synchronous design using a clk signal. Figure 5b 

is the asynchronous implementation. Where local handshake modules are replaced where 

there was previously a clk port. 
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Throughout this thesis, we may refer the local handshaking module as asynchronous 

pipeline controller. When, we consider a neighbour module, that module that is direct 

connected to the a given controller. In addition, the data flow convention is from left to right. 

In addition, Sparsø (2001) stands that, 

 

An important message is that the “handshake-channel and data-token view” 

represents a very useful abstraction that is equivalent to the register transfer 

level (RTL) used in the design of synchronous circuits. 

 

Figure 5 - Pipeline designs. 

 
Source: BUTZKE, F.S. 

 

2.2.2 Communication Protocols 

A quick clarification about handshake protocols and asynchronous circuits. Handshake 

is the process of exchanging communication with other modules by explicit request, req, and 

acknowledge, ack, wires. Handshaking is not exclusively implemented with asynchronous 

designs (KESSELS, 2002).  

It happens that in asynchronous circuits the handshake is the method used to 

implement the communication. The point is that the circuit inside the module that is 
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implementing the handshake is the truly asynchronous design that happes to implement the 

handshaking protocol.  

 Thus, we are going to first introduce the handshaking protocols. In subsection will 

focus on showing how a handshake protocol may exchange data. Figure 6 represents three 

asynchronous pipeline stages. Each stage has its own controller that implements the 

handshake protocol. The both channels are highlighted with red circles.  

 

Figure 6 - Asynchronous pipeline. 

 
Source: BUTZKE, F.S. 

 

2.2.2.1 Bundled-data 

The bundled-data handshaking protocol consists of “bundling” the data into explicit 

req channels. Figure 7 shows an abstraction of a pipeline. Circles represent a pipeline state. 

The register and the data are omitted. In this representation, when module a must request to 

module b it does so by sending a request in the req wire. Once module b stores the data it 

acknowledges the communication sending a response in the ack channel. There are other 

types of channel encoding that do not use explicit request lines (CANNIZZARO, 2012), but 

they are out of the scope of this thesis. 
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Figure 7 - Bundled-data handshaking protocol. 

 
Source: BUTZKE, F.S. 

 

2.2.2.2 Four-Phase 

The four-phase handshaking protocol means that the req and ack must accomplish 

four transitions to be the exchange to be considered valid. Figure 8 shows a timing diagram 

for a four-phase bundled-data protocol. 

 

Figure 8 - 4-phase bundled-data protocol. 

 
Source: MOREIRA, M. 

 

2.2.2.3 Two-Phase 

A variation of the 4-phase bundled data is the 2-phase bundled-data protocol. The 

protocol behavior is depicted in Figure 9. In this protocol, the transition that was wasted by 

the 4-phase protocol is now valid.  

This protocol may lead to improvements in performance but it has an area tradeoff as 

shown in (MYERS, 2001). 
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Figure 9 - 2-phase bundled-data protocol. 

 
Source: MOREIRA, M. 

 

2.2.3 Delay Models 

This section presents the difference of delay models in asynchronous circuits. For 

instance: there are three main delay models for any asynchronous designs: Delay Insensitive 

(DI), Fundamental Mode (FM) and Speed Independent (SI).  

Before moving on in the structure of the designs we introduce the conceit of active and 

lazy asynchronous designs. As we have seen previously, AFSM responds to input transition. 

In asynchronous circuits a channel that waits the input transitions is said to be lazy. While the 

channel that initiates the communication is said to be active. In the design schematics, the 

active channel is presented with a black circle. 

Figure 10 shows the same pipeline that was previously introduced. But instead of 

focusing in the handshake protocol, we move the focus to the circuit inside the pipeline 

controllers. The asynchronous designs the actually implements the handshaking protocol. 
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Figure 10 - Asynchronous pipeline. 

 
Source: BUTZKE, F.S.   

  

2.2.3.1 Delay Insensitive 

This subsection introduces the DI delay model. Figure 11a shows the DI 

implementation for the design of the module presented in Figure 11b, this module represents a 

lazy/active module.  

The cigar shaped components are wire or environment delays. The have a lower bound 

of 0 and an upper bound of infinity. The circles with with a centralized C represent C-

elements. They one of the basic building blocks for asynchronous circuits that implement DI 

designs. Their function is to keep the previous output until the point all its input are the 

complement of the output. It is an analogy for a majoritary gate. 

Consider that all internal variables are 0. Then, the only possible outcome is that A 

may go to 1 between [0, inf] time units. Once A is 1, x goes to 1. Here either A can go to 0 

and B can go to 1. But for whichever delay values are chosen each time around they output 

produced by this design will work. This circuit is said to be a delay-insensitive design. 
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Figure 11 - Delay insensitive delay model. 

 
Source: MYERS, C.J. 

 

At this point we may think that we can design any circuit as a DI design. 

Unfortunately, this is not the case. In general, if only single output gates are required(buffers, 

inverters, C-elements), this class of circuits might be valid, but it is severely limited (MYERS, 

2001). 

 

2.2.3.2 Funamental Mode 

The second class of asynchronous delay model is called Fundamental Mode. This 

delay model assumes that the circuit is operated in a single-input fundamental mode. The 

environment will apply only a single input change each time. It considers the time required 

for the internal states to stabilizes.  

To maintain the order and correctness, it may not only be necessary to slow down the 

environment, but it may also be necessary to delay the state signal change from being fed 

back too soon by adding a delay between X and x (MYERS, 2001). 

Figure 12 presents a design using the fundamental assumption. The circuit implements 

an active/active protocol where both output port, x and y, actively send requests. When the 

output port is active it is represented as a black bullet in the top module. The logic network is 

composed only by inverters, buffers, AND and OR-gates.  

Previously we have seen the DI delay model, where delay had no impact inside the 

module. Unfortunately this is no longer the case in FM designs. Assume that all signals are 0 

except u2, u4, u5, and u6 which are 1. Then trace the following behavior: x+, A+, Z+, z+, x−, 

A−, y+, B+. 
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Figure 12 - Fundamental mode delay model. 

 
Source: MYERS, C.J. 

 

After u2 becomes 0, x can go to 0, and assume that it does so before u6 goes to 0. 

After z becomes 0, u4 can go to 1. If this happens before u6−, then z is enabled to go to 1.  

We may have a momentary glitch in x. To avoid the error, we add enough delay in the 

feedback path that u6 must accomplish its transition before the internal state is fed back. 

At this point, u2 and u6 are again enabled to go to 0. Assuming that the delay of u2− is 

faster than that of u6−. After u2 becomes 0, Z can go to 0 before u6 goes to 0. However, in 

this case, we have added sufficient delay in the feedback path such that we do not allow the 

internal state to feedback until we have ensured that the circuit has stabilized. In other words, 

as long as the delay in the feedback path is greater than the upper bound wire delays, U, the 

glitch does not occur. 

 

2.2.3.3 Speed Independent 

The third and last delay model represents the class of Speed Independent circuits (SI). 

Figure 13 shows the the logic network and the top module. SI circuits are very similar to FM 

circuits. However, notice that the delay in wires have no bounds. SI has only a single delay 

element on each output and next state signal. The upper bound of the delay elements have also 

changed to infinity. In addition, there is no requirements for delaying the feedback, z. A 

similar model where only certain forks are isochronic is called quasi-delay insensitive (QDI).  
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Figure 13 - Speed independent delay model. 

 
Source: MYERS, C.J. 

 

Consider again the sequence: x+, A+, z+, x-, A−, y+, B+. At this point, the gates for z 

and y see the change in A at the same time, due to the isochronic fork. Therefore, when z goes 

to 0, the effect of A being 1 has already been felt by y, so it does not glitch to 1. 

This means that whenever a signal changes value, all gates it is connected to will see 

that change immediately. For example, B and A each fork to two other gates while z forks to 

three. These forks are called isochronic forks, meaning that they have no delay. 

Those isochronic forks may be hard to design. Both, SI and FM, models require some 

special attention to delays. In addition, not all the forks need to be isochronic. For instance 

each branches of the wire fork for z may have a different delay and the circuit still operates 

correctly. 

 

2.2.4 Graphical Representation 

The following subsection presents the different graphical representation could be used 

to demonstrated and design an asynchronous circuit. 

 

2.2.4.1 Flow Table 

The most basic form of representing an asynchronous design is with a flow table. 

Flow table are a sort of k-maps for asynchronous circuits. They represents the basic model for 

any asynchronous design. They relate input transitions, output transitions with an internal 

state variable. Figure 14a shows a pipeline controller and Figure 14b represents the flow table. 
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Figure 14 - Flow table. 

 
Source: MYERS, C.J. 

 

In the flow table the leftmost column represents the internal state. The top labels 

represent the input ports, the bottom label represents the output ports and the cells represents 

the total state that is the combination of the internal state and the output values. 

For example, starting at the state s0 column 00. The output are also 00. If LR goes to 

1, then the flow table, “flows” towards the last column, 10, and moves down to the state s1. It 

ends up with the total state of “s1 10”. Recall that the total state is the internal state and the 

output combined, thus s1 10 means that the flow table for this controller outputs LA = 1 for 

this particular total state. 

 

2.2.4.2 AFSM 

A finite state machine is usually represented by a graph. Where the set of vertices are 

the states and the set of edges are the state transitions. Each edge specifies the input that 

generates the transition to the output state. In asynchronous circuits there are actually a graph 

called AFSM. Figure 15 shows the AFSM that shapes the behavior of the same designs from 

Figure 15. As expected the flow table shown in Figure 15b is the same for both. In summary, 

an AFSM represents a flow table. 
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Figure 15 - Asynchronous finite state machine. 

 
Source: MYERS, C. J. 

 

2.2.4.3 Burst-Mode State Machines 

Yet another graphical representation is called Burst-Mode state machines (MYERS, 

2001). Figure 16a shows the graph that implements the same flow table from the previous 

example.  

 

Figure 16 - Burst-mode state machine. 

 
Source: MYERS, C. J. 

 

The difference is that the edges are labeled with the input / output transitions rather 

than their logic level. They represent whether an input is expected to rise or to fall within a 

transition. The input set is called input burst and the output set is called output burst.  
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Input bursts may not be empty. On the other hand, there is no concern in regards to 

empty output bursts. In addition, a BM can also be translated to a flow table. The flow table 

that represents the BM is shown in Figure 16b. 

2.2.5 Design Implementation 

This subsection presents different methodologies that have been proposed in order to 

map the an asynchronous specification into a working gates network. 

 

2.2.5.1 Syntax-Directed Translation 

Syntax-Directed Translation (SDT) expands the handshaking protocol directed to 

predefined communication hardware structures. The structures implement C-elements, 

arbitrators and toggles that implement the expected behavior. A deep study of SDT is shown 

in (MYERS, 2001). 

 

2.2.5.2 Flow Table Reduction 

This is the most common way of implementing BM designs, the example of how to 

generate logic equations from BM state machines is shown in (MYERS, 2001) and (BEEREL, 

2010). 

It starts with a high level BM specification. Then a set of implementation tools, e.g. 

3D and MINIMALIST, convert the BM into a flow table and then realize the state assignment 

and logic reduction among other optimizations (YUN, 1994)(FUHRER et al, 1999). The 

algorithms that realize those minimization may be find in (MYERS, 2001).  

As a result, the tools produce the set of logic equations that represent the 

implementation of the design. In the case study section we are going to introduce further steps 

that might be required in order to produce the valid logic network. 
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Figure 17 - Design implementation. 

 

 
Source: BEEREL, P. A. 

 

2.2.6 Verification 

When it comes to the commercial exploitation of asynchronous circuits the problem of 

test comes to the fore (SPARSØ, 2001). 

In the synchronous circuits, the performance of a pipelined is defined in terms of its 

latency and throughput. Throughput represents the number of token that are exchanged per 

cycle. And Latency is the number of clk ticks that are needed in order to produce a result. 

The cycle time in an asynchronous system is the period between two results. Because 

this time can vary between tokens, it is often taken to be the average time between output 

tokens (BEEREL et al, 2010).  

Beerel (2010) also mentions that, 

The latency of an asynchronous system is the time between input tokens 

being consumed at the primary inputs and output tokens being generated. 

Latency is measured by the presentation of one set of primary input tokens in 

isolation, to avoid the possibility of congestion caused by previous tokens 

impacting the measurement. 
 

When a designer builds an asynchronous specification, he or she, tries to identify 

whether a deadlock could arise. In order to validate the specification against its original 

specification, simulation can be used. But this cannot ensure complete testing coverage 

(MYERS, 2001).  
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The previous scenario leads to methods of verification that check whether a 

specification meets the requirements under all permissible delay behaviors or not.  

In asynchronous design anything short of exhaustive simulation will not ensure the 

correctness of the implementation. In this sort of circuits, a hazard could appear in a very 

narrowed set of input vectors, in a very specific case and delays. Thus, checking the circuit 

under all possible delays is a must (MYERS, 2010). 

 

2.3 Delays and Hazards 

A glitch in asynchronous designs may cause the system to go to an unwanted internal 

state. Thus, the circuit must be hazard free. 

Unger (1969) explains delay elements and stray delays. Here we introduce the 

difference between delay elements and stray delays. Delay elements are delays that have been 

deliberately introduced in the design, while stray delays are those delays that are present in 

gates and wires because of physical characteristics of the manufacturing process. While delay 

elements have a minimum and maximum bounded value, stary dalys are modeled with a 

minimum bound of 0 to some unknown upper bound. A design that is created without delay 

elements is said to be delay free. But that does not mean that the circuit has zero delay, since 

the stray delays in the logic components and wires. 

The stray delays play an important role in a combinational design. As demonstrated in 

Unger (1969), stray delays may cause unwanted pulses in the output function after specific set 

of input vectors. Thus, a circuit in which such pulses may occur for some distribution of stray 

delays is said to have a combinational hazard. 

Unger (1969) also says that this hazards are related to the circuit configuration and not 

with the physical implementations. A hazard free design is one that does not presents 

combinational hazards regardless of the distribution of stray delays.   

In Brown (2008) some example of static and dynamic hazards are presented. In 

synchronous design, a hazard can be tolerated when it does not harm the function of a circuit. 

However, in asynchronous circuits, since they are transition based implementations, a tiny 

glitch may lead the AFSM to go to an undesired state and cause a deadlock.  

The combinational hazard if felt in the design through two types of hazards, they are 

static hazards and dynamic hazards. Figure 18a and Figure 18b  show two static hazards and 

Figure 18c and Figure 18d shows two dynamic hazards. 
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Figure 18 - Static and dynamic hazards. 

 

 
Source: BROWN, S. 

 

2.3.1 Static Hazard 

A static hazard exist if a signal has a momentary pulse when the output should be kept 

in a particular logic level after one or more input variables have changed (BROWN, 2008). 

Figure 16a shows a network with a static hazard. suppose that the circuit has 

x1=x2=x3=1. And x1 goes low. Now, the circuit is suppose to keep f, but consider that each 

gate has one tiny unit of propagation delay, then the change will appear in a first than in b. 

Therefore the signal at a will become low before the signal at b goes high. Consequently, for a 

tiny unit, a and b will be low, causing the function to display a 0 output.  

Fortunately this static hazard can be eliminated by combining prime implicants in the 

K-map. The K-map for the function is depicted in Figure 16b. The original function covered 

just the two prime implicants that are circled in black. The hazard occurs when there is a 

transition from the prime implicant  𝑥1̄ 𝑥3to 𝑥1𝑥2, since a potential hazard exists wherever two 

adjacent 1s in a K-map are not covered by a single product. Thus, a technique for removing 

hazards is to find the cover that will include both previous prime implicants and avoid the 

“jump” from one to another. Hence, the inclusion of a third prime implicant, pink circle, in 

the K-map will cover the both product terms, solving the static hazard and generating a hazard 

free circuit presented in Figure 16c. 
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Figure 19 - Static hazard. 

 
Source: BROWN, S. 

 

2.3.2 Dynamic Hazard 

This hazard arises when the output is supposed to change from 0 to 1 or the other way 

around and the output experiences an oscillation before the right output value settles in the 

wanted level, then it is said that a dynamic hazard exists (BROWN, 2008). 

The example in Figure 20a shows a circuit that  has a dynamic hazard. Assume that all 

the NAND gates has the same delay, the timing diagram is shown in Figure 20b. Looking at 

the diagram it shows a glitch that was not suppose to happen. This sort of hazard is caused by 

the topology of the circuit, where multiple paths exist for a given signal to propagate. If the 

output signal changes its values three times, then there must be at least three paths along 

which a change from a primary input can propagate.  Also, a circuit that has a dynamic hazard 

must also have a static hazard.  

As Brown (2008) mentions, this hazards are not easy to detect nor easy to deal with. 

They can be avoided using two-level logic, e.g. sum-of-products, and cleaning the static 

hazards of the implementation. 
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Figure 20 - Dynamic hazard. 

 
Source: BROWN, S. 

 

2.4 SystemC 

SystemC is a set of C++ classes that were written to emulate the behavior of hardware 

in a way the default C++ cannot. Since SC is implemented using C++ it may be compiled 

using gcc or g++ or any other C++ compiler available. SystemC can be downloaded at 

http://www.SystemC.org. The current SystemC version is  2.3.1.  

Similar to C++, a SC program start the sc_main. The first task performed by the 

program is to instantiate the top modules and connect the channels. Modules can be defined as 

SC_MODULE classes while channels are sc_signals. 

A the object of type SC_MODULE represents a hardware component with some input 

ports, output ports. It might have even more sub modules and channels. 

A SC_CTOR is the constructor method for the SC_MODULE class. This method is 

called just in the initialization phase and its task is to instantiate sub modules and channels as 

well as connecting them. Furthermore, a SC_MODULE class may have internal functions, 

called member functions.  

Member functions may model any digital logic. SC has two data types: sc_logic and 

sc_lv< W >. Sc_logic represents a single bit, while sc_lv represents W bits. Both data types 

model logic channels and may assume the states: 1 0 X Z. They are equivalent of 

std_logic_vector in VHDL. 

http://accellera.org/downloads/standards/systemc
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The main role of the simulation is to coordinate the member functions that represent 

threads that are executed by the simulation kernel. SC_THREAD is a SC method that takes 

the member function and binds it to the simulation kernel. SC_THREAD is called inside the 

SC_MODULE SC_CTOR method. 

A SC_THREAD is something like an always block in verilog. Before the simulation is 

actually initiated, the SC_THREAD method is called for all member functions that must be 

registered. At this point all member functions were registered and the simulation kernel may 

start executing. A SC_THREAD that has executed all its code and returned, cannot be 

registered again within the same simulation.  

The event listener for a SC_THREAD is the SC function wait(). A SC_THREAD 

must have at least one wait() statement in order to be valid. 

The wait plays an important role within the simulation kernel. Even though we are 

simulation concurrent systems, they are actually computed in a random sequential order by 

the CPU. Thus, the SC simulation kernel has a concept called delta delay that represent a 

point in time which the things happened concurrently.  

SC kernel emulates a concurrent environment by orchestrating and managing the input 

and output values for each SC_THREAD within delay delay, a delta delay represent a given 

point in time where things happen concurrently. 

When a SC_THREAD is executing it has the control over the simulation, to return the 

control to simulation kernel in order to advance simulation time the SC_THREADS. Wait() 

function may also represent a timer event. It accepts an amount of time as argument and after 

the timeout it return the execution to the SC_THREAD. 

When a wait() statement is executed, the simulation kernel saves the previous state of 

the SC_THREAD and when it resumes, the next piece of code that is going to be executed is 

the next statement after the last wait(). 

Figure 21 represents a SC 2-input NOR that is sensitive to a clock edge. Line 4 is the 

module declaration. Line 5 represents the input port for the clock signal. Lines 6-21 represent 

the actual member function of NOR that is responsible for the output generation. Lines 23-27 

show the SC_CTO and the registration of the process main_thread using SC_THREAD 

method. Line 26 shows the sensitive list that causes the SC_THREAD to execute. 

 

  



38 

 

Figure 21 - SystemC SC_MODULE example. 

 

 
Source: BUTZKE, F.S. 

 

The main_thread works as follows: When the process is registered, 

SC_THREAD(main_thread), in the constructor, the code of main_thread starts being 

executed. Thus the first line, line 7, calls wait() and returns the control to simulation kernel 

while place line 8 as the top of the stack. When the simulation produces a positive clk, it 

knows that the process main_thread is waiting for it, thus it starts executing the member 

function from the top of the stack downwards. Thus, within a positive clock edge the design 

will execute lines 8-10. Since, the 10th line is another wait(), the last iteration is repeated.  

The simulation will execute until the point line 11 is executed. Since there is no other 

code, the main_thread return to simulation kernel and destroys itself. In this example the 

simulation kernel has only one thread and thus it stops and return the program. In actual 

designs, SC_THREDS are commonly designed as infinity loops to prevent them of being 

canceled. 

 

 

  



39 

 

3 RELATED WORKS 

In this section we present four related works that represent some similarity with this 

thesis. The first related work is “Min–Max Timing Analysis and an Application to 

Asynchronous Circuits”. It is an IEEE paper published by (CHAKRABORTY et al, 1999). 

The authors present a timing analyzer tool for modeling the constraints for correct operation 

in asynchronous circuits. Their work presents a min-max timing simulation algorithm that is 

employed in timing analysis with bounded component delays. Their algorithm uses an 

approach that each input to internal gate wire has a unique delay. They also show a technique 

for simulation accuracy. They design circuits using an extended burst-mode state machine as 

a case study. Finally their tool analyzes the gate-level design assuming bounded component 

delays and then set safe timing constraints. 

This paper is linked to the current thesis because it proposed a min-max timing 

analysis for asynchronous circuits regarding their wire and gate delays using FM assumptions. 

The work presented an extensive analysis of asynchronous designs using a timing verification 

tool that simulates the circuit with a polynomial-time algorithm that approximates bounded 

gate delays. The paper represents a subclass of the current thesis because it simulates the 

environment through bounded gate and wire delays with the proposed algorithm presented by 

them while this thesis aims to verify the circuit correctness by simulating random delays 

between upper and lower bounds that go beyond the normal behavior of the components. 

The second paper entitled “The Verification of Asynchronous Circuits with Bounded 

Inertial Gate Delays” was written by (GONG et al, 1998). The work presents a method that 

cover all deviation delays of gate-level implementation of asynchronous circuits.  

The package developed for the paper aimed to simulate all the possible behaviors of 

the asynchronous circuits composed by simple gates with inertial delays under a series of 

input signal specified by the Signal Transition Graph. The stimulus generation focus on the 

input stimulus as key point. The input stimulus set may be configured as the designers want, 

modeling high concurrent designs that may lead to glitches.  

Although these short pulses can be filtered out by the inertial characteristics of the 

gates, the authors say it is not guaranteed that they will not propagate to the outputs of the 

actual circuit, so they should be eliminated. Thus they present a technique for error correction 

by adding delays to the feedback path of those feedbacks that have glitches that will impact 

the circuit, therefore avoiding hazards. Within the input set, it is possible to specify the 

transition orders, with the transition order well defined it is possible to find the first wrong 
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gate transition and assert the reason causing this undesired transition. This information helps 

to add appropriate delay margin at the right places. 

In short, the second work presented a method to verify the correctness of the gate-level 

implementations that were generated by a STG where the hazards are eliminated by padding 

delay elements at the appropriate nodes of the circuit. 

 The second paper relates to the current thesis because they present a flow from 

generating timing analysis and delay correction for asynchronous circuits generated through 

STGs that are similar to burst-mode graphs. They correct errors by adding delay constraints to 

the feedback path, avoiding glitches in the circuit. In this thesis we use the error metrics for 

detecting glitches in a similar way that was proposed by the second related work. 

The third work is entitled "Verification of asynchronous circuits” by 

(CUNNINGHAM, 2004). The represents the PhD thesis to the University of Cambridge, 

where Cunningham proposes an extended formal notation to permit the use of signal levels 

and transitions into previous formal verification methods. The thesis proposes a event-

oriented verification program called Veraci.  

Within the third related work, the author introduces the concept of event driven 

circuits where the transitions are important concepts for the circuit to work. The circuit is said 

to be valid when the input events produce the intended behavior. The author then explains 

how formal verification should be an essential step of the design for modeling the circuit 

behavior using formal methods. He says that formal verification is complex and a high costing 

procedure and because of that, most of the time simulations are used to verify the 

functionality of the circuit. 

There are two methodologies for designing a circuit, they are level-oriented or event-

oriented methodologies. These both methodologies are used to specify behavior of circuits 

and in practice designers use both. This related work proposes a third variation called 

proposition-oriented behaviour that embraces both of those methodologies. Veraci is a 

proposition-oriented framework that is used to demonstrate for asynchronous designs. 

The third related work relates with this thesis in the verification step, where the 

proposition-oriented behavior shows a relation with the proposed case study and the event 

driven nature of his proposed methodology. In addition the PhD thesis presented as the third 

related work brings many fundamental concepts and ideas about asynchronous circuits and 

verification that is a great resource of knowledge. 
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The fourth related work regards to a framework for modeling asynchronous circuits in 

SystemC. The work entitled“ASC, a SystemC extension for Modeling Asynchronous 

Systems, and its Application to an Asynchronous NoC”. It was published by (KOCH-HOFER 

et al, 2007). The main contribution of this paper is the Asynchronous System (ASC), the 

Asynchronous SystemC framework, that offers the same communication primitives as other 

tools, e.g. Balsa. The developed library comes with a set of arbiters that are the basic block for 

building Network on Chips. The aim of the paper is to offer to designers means of modeling 

and verifying asynchronous circuits. They present a result which shows that a Network on 

Chip (NoC) that was developed using the ASC library has successfully been integrated into 

complex Globally Asynchronous Locally Synchronous (GALS) NoC architecture. 

The last related work increases the SystemC functionalities and scope by providing 

extra classes for improving the event driven nature of SystemC library. When the ASC is used 

it allows the designs to model asynchronous circuits in a way that is easier than implementing 

all event listeners and members functions for a given asynchronous design. It eases the 

process of mapping asynchronous designs to SC. This is the point where it links to the current 

thesis, it presents a way of mapping asynchronous designs to SystemC and how to structure 

the model and classes of the project. The related work offers the fundamentals for 

understanding and maximizing the potential advantages that SystemC has to map 

asynchronous circuits and verify them. Unfortunately, I have discovered this SC extension 

only after the work had already started, making impossible to restart all the process of design 

from scratch. But it was a great help because of the resources and ideas I could use within my 

implementation. 
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4 CASE STUDY 

Designs that implement FSMs usually have two main blocks: control and datapath. 

When the datapath requires that more than one instruction to execute per cycle, it implements 

a pipelined datapath. The pipeline breaks the datapath in stages, each stage can be computed 

at the same clock cycle and store the data to registers. It allows the datapath to be concurrent. 

A clocked pipeline has its registers controlled by a period signal generally called clock 

(clk). One of the pipeline requirements is to match the delay of the clock signal for 

combinational circuit that takes the longest time to compute through buffer insertion. It 

guarantees that the clock signal will be seen by all stages at the same time or at the same 

phase, at least. Thus, pipelines with many stages may require extra circuitry for delay 

matching.  

An approach that may eliminate the clock problem and improve performance is to 

replace the clock signal by local handshake modules that will have channel interfaces that will 

connected to, and only to, its neighbours. Therefore, we model an asynchronous pipeline as a 

set of stages. In a top level view, the asynchronous pipeline simply expands by adding a local 

stage that is connected just to direct neighbour stages.  

The simple idea of modularity does not translate the ease of designing the pipeline. To 

ensure that the pipeline works it is required that all pipeline controller implement the same 

communication protocol and they must be hazard-free. 

  Thus, this thesis will focus in asynchronous pipeline controllers as case study to be 

verified with the proposed verification environment. The controller implements a 4-phase 

bundled data handshaking protocol and is designed according FM delay assumptions. 

 

4.1 Burst Mode Controller Specification 

Figure 22 shows the top level specification of the pipeline controller use as case study. 

The pipeline controller has five ports: left request (LR), left acknowledge (LA), right request 

(RR), right acknowledge (RA) and enable (en). 

The horizontal ports represent the interface for handshaking protocol, while the en port 

represents the enable signal that is used to dictate the operation of the latch. When en is 0, the 

latch is said to be opaque. In the other hand, 1 means that the latch is transparent. When it is 

opaque, the latch holds the data and when it is transparent it sends its input direct to the 

output. 
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Figure 22 - Pipeline controller top level design. 

 
Source: BUTZKE, F.S. 

 

After defining the problem specification, the first step for implementing the proposed 

design is the BM state machine. Figure 23 depicts the AFSM for the proposed case study. The 

state machine has eight states.  

In the initial state, s0, all signals are 0 but en. The en signal is 1 since the latch is 

transparent in the initial state, meaning it is transparent. 

Example: Consider the current state s0, where all input and output ports are 0. Then, 

an event happens at LR port, where it goes from 0 to 1 represented as LR+. It produces LA+, 

RR+ and en-. Then it moves to state s1. 

 In state s1 there are two option: RA+ or LR-. Since it assumes a single input change, 

as soon as one of them transitions, the state machine is going to transition to the respective 

next state before the other input changes. Consider that the transition RA+ happened. It means 

the right neighbour of this controller is acknowledging the communication and, thus, it has 

already saved the value of the data and no longer local storage is required. Therefore, the 

controller starts completing the 4-phase protocol by RR- and also reopens the latch en+. Then 

the internal state goes to s2. 

 State s2 has also two possible transition events: LR- and RA-. Since the left channel is 

still 1, it could go to 0 at any time. In addition, as we have sent RR- in state s2, RA- could 

also go to 0. Suppose RA- does go to 0. Then the state machine goes to state s3 and does not 

output any value. 

 State s3 has only one possible transition, LR-. At this point the state machine just 

waits the left channel to reset the 4-phase communication protocol and then, goes back to the 

initial state, s0. The s0→s1→s2→s3→s0 transition is highlighted with red vertices. 
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Figure 23 - Pipeline controller burst-mode specification. 

 

 
Source: BUTZKE, F.S. 

 

In the previous example it has been shown that there are some states that have two 

possible next state. Actually, there are three states where two events are expected: s1, s2 and 

s4. These states represent a concurrent design. E.g. Following s0→s1→s4→s6 the left channel 

accomplished a full 4-phase communication and then it receives another LR+, without even 

receiving the first RA+. Thus, those forks represent concurrency. 

4.2 Asynchronous Finite State Machine 

Once a valid BM specification is found, it may be translated into a flow table. As 

previously seen, the tools 3D ana MINIMALIST implement the requirements for translating 

BM into flow tables. 

The proposed case study chose arbitrarily the 3D tool implement the design. Figure 

24a shows the BM state machine translated into a file that represents the input file that 3D 

uses for generating the logic equations. 
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The file is composed by three parts: input variables, output variables and state 

transitions. The initial state for input and output ports is the number located next to them. E.g. 

en starts in 1. In addition, the the tool considers that the initial state is 0. 

The state transitions are described as they are seen in the BM state machine. For each 

edge within the BM we specify a line in the 3D input file. Each line represents: the current 

state, the next state, the input burst and the output bursts. 

 

Figure 24 - 3D tool - input and output data. 

 
Source: BUTZKE, F.S. 

 

When the tool is executed it parses the data file then it produces the asynchronous 

finite state machine of the burst mode specification, then use some internal techniques for 

logic minimization and finally produces the logic equations that represent the asynchronous 

design. 

Figure 24b depicts the output logic equations for the controller specification. It 

produces a logic equation for each output port as well as for the internal state, z00, that is used 

to keep the current state. The internal state variable was generated since the case study 

represents a concurrent design. In the other hand, if it had a very specific protocol, a unique 

set of input transitions occurring in a well known order, the internal state would not be 

necessary. 
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4.3 Technology Mapping 

The next step generates the network of gates that will represent the controller. This 

process is accomplished manually in this thesis. Where the logic equations are mapped to 

complex gates by matching similar sum-of-products functions. Initially, translating the 

original logic equation of Figure 24b to a network of gates, it would result in the logic 

network shown in Figure 25. In this figure, each blue box represents a logic cell. For 

demonstration purposes the complement of the input ports are considered to be input ports, as 

well. Thus, the complemented signals containing a tilde (~) prefix are also input ports. 

 

Figure 25 - Design implementation. 

 
Source: BUTZKE, F.S. 

 

In Figure 25, it is possible to note that the output of the LA, Z0 and en networks are 

fed back into their own circuitry. This feedback represent that the gates will always consider 

their past output values in addition to their input.  

In addition, the signal Z is not an output port, but it is used by the other modules to 

ensure that the AFSM is kept in the right state. Thus Z is a “double feedback” where is used 

by itself and by the other logic networks.  
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Recall that the gates and wires have propagation delays. PVT variations usually 

change the capacitance characteristics of the components and thus change their delay bounds. 

E.g. a component has a better performance when it is cold (WESTE, 2010). Thus the 

inconsistency of delays from a component to another may lead to timing differences inside the 

circuit. Therefore, having many logic levels for each output is not a good practice, since the 

delays in the wires from a gate to another may lead to static or even dynamic hazards.  

For instance, in Figure 25 z0 has two logic levels. It has four 3-input AND gates 

connected to a single OR gate. In this case we have four wires that need to be connected to the 

4-input OR that might or might not have the same length in silicon. Thus, their capacitance 

may vary, varying their propagation delays. Even though the order of magnitude may be very 

low we cannot predict whether there will be a timing violation. 

A good practice is always to try to map those logic functions to a given technology of 

complex gates. In this thesis a particular design kit was used to map the logic equations to 

complex gates. The design kit has many complex gates that implement complex logic 

functions and are very useful for mapping the logic equations.  

Figure 26 represents the logic equations from the previous example mapped to 

complex gates of a given third-party design kit. In this figure, there are two main changes: i) 

The single gates from Figure 25 were mapped to more complex functions. ii) There are some 

gates that ensure the initial state or reset state of the controller. 

The first part is the analysis of the complex gates. The logic network for LA had two 

AND gates connected to an OR. After the technology mapping, it became an entire AND-OR-

INV(AOI) complex gate. It is called AOI32. This means that the top AND is a 3-input AND 

and the bottom is a 2-input AND. 
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Figure 26 - Mapped technology. 

 

 
Source: BUTZKE, F.S. 

 

The logic network for RR is also mapped with an AOI32 gate. In the other hand, the 

logic network for the en is an AOI212, where there are two 2-input AND and a third 

connection straight to the OR.  

Finally, the internal state Z needs four different AND gates that should be connected 

by an OR gate. Its original logic equation has no similar complex gate. Thus, the mapping of 

the original functions cannot be realized directly. The solution to use a pair of AOI33 

complex gates. Two 3-input AND gates connected by a NOR. 

The second topic relates to those NOR, NAND and AND gates that are connected to 

the output ports. 

Initially, suppose there exists a complex gate, g, that is an AOI. Its output function is inverted, 

𝑜̄. There is a trick using Boolean Algebra that enables complementing the output at the same 

time a rst signal resets the value. Thus, it is not required to add an explicit inverter.  

When rst is active high, the internal states and the output ports go to their initial states 

when rst = 1. The way the reset state is accomplish within the controller design is as follows: 

When feedback and output ports must go to 0 a NOR gate is used: (𝑜̄) ∨ 𝑟𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → 𝑜 ∧  𝑟𝑠𝑡̅̅ ̅̅ .  In 

the other hand when the feedback must be 1, a NAND gate called NANDA is used. The A 

comes from an inverted input and is the input port rst is connected to: (𝑜̄) ∧ 𝑟𝑠𝑡̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → 𝑜 ∨ 𝑟𝑠𝑡.  

For the LA network, LA must be 0 in the initial state, thus Thus, a NOR that inverts 

~LA at the same time resets it is connected to the fanout. This design pattern is copied for RR. 
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Enable output must be 1 in the reset state. Thus, the NANDA gate is used to invert ~en 

and reset it. In this example, another advantage of using AOI for building the logic network is 

seen. Since the AOI outputs ~en there is no need for placing an inverter in the controller for 

inverting the enable signal. Thus, the logic network responsible for generating en also 

generates ~en that can be connected over the entire controller. 

Finally, the internal states Z has an AND gate connecting both AOI complex gates. It 

represents the following function: (𝑎𝑜𝑖𝐴̅̅ ̅̅ ̅̅ ) ∧ (𝑎𝑜𝑖𝐵̅̅ ̅̅ ̅̅ ) → 𝑍̅. As mentioned previously, ~en, is an 

useful signal because it is used in other logic networks, the same happens with ~Z. We then 

use a single inverter to complement the variable and generate Z. 

The mapping into complex gates reduces the risk of dynamic hazards and static 

hazards since it reduces the number of logic levels and the timing requirements to compute 

the output after a given input transition. 

Even though the risk is reduced, the circuit still contains many timing assumptions and 

path delays that must be verified. Figure 27 shows an example of the delays for computing the 

output LA. The delays are drawn as red lines with small squares on the edges. It is possible to 

notice that each part of the circuit may have one delay. For example, from the moment a 

signal arrives at the input port of the controller until the moment the complex gate of the LA 

module fells it may take 1 ps for LR and 2 ps for the inverted RA. 

 

Figure 27 - Delays in the LA module. 

 
Source: BUTZKE, F.S. 

 

Finally, it has been shown that even though the controller is mapped with complex 

gates that perform complex logic functions, the functions still have delays. Figure 27 has the 

ultimate demonstration of what should be taken in account when the design is verified. Those 

delays for each one of the controller modules and wires may represent a great effort 
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requirement for verifying the controller. Thus, in the next section a verification environment 

for those delays is presented. 
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5 TIMING VERIFICATION ENVIRONMENT 

This section presents the main contribution of this thesis. It presents the development 

steps and how they are organized for the development of the verification framework. 

 

5.1 Overview 

Figure 28 presents the different pieces that are connected to form the verification 

environment framework that is going to verify the pipeline controller case study. 

 

Figure 28 - Proposed verification framework overview. 

 

 
Source: BUTZKE, F.S. 

 

The figure presents two main parts. Figure 28a shows the steps that have been 

followed in the case study development. Figure 28b, is the proposed verification framework. 

It starts with the SystemC Model of the asynchronous design that is the case study proposed. 

It represents the complex gates and the connections that have been set up in the logic network. 

At this point both, wires and gates, are modeled as SystemC processes. Once the model is 

structured and all input and output ports are connected, the system is then ready to start 

simulating.  
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The central coordinator of the framework, the Makefile script, calls the SystemC and 

the other support analysis tools such as MATLAB that will display the charts when the 

simulation is completed and generating the waveforms for visual analysis.  

Within the proposed environment, a simulation has n rounds. Within each round new 

random delays are generated for the wires and gates of the System Model. Once the setup 

phase is ready the environment runs a testbench that places the controller in a virtual pipeline 

environment and starts producing stimulus for it. The testbench executes the testbench until it 

reaches a predefined number of interaction. An interaction represent a communication where 

the AFSM is at a given initial state and after receiving the input stimulus goes back to some 

initial state. 

The testbench executes two runs. Each run accomplishes three interactions. Within 

each, the testbench runs two scenarios: the most concurrent communication environment and 

the least concurrent simulation environment.  

In the end of the simulation, report files and data are generated. They are used by other 

tools of the framework to display the results of the execution. 

Once the general overview of the framework has been shown, the following sections 

are going to explain the specific details about the implementation. Figure 29 shows the 

architecture of the SystemC Model. It is composed by the top level module called System. 

The System instantiates two internal modules: tb, and controller. Both internal modules are 

connected through the same set of channels. The arrows indicate the data flow, from who 

produces to who consumes the data. 

The ellipses and circles represent registered processes in SystemC. They are 

implemented as SystemC threads. The square and rectangular shapes are modules and are 

declared as SC_MODULE classes in the System Model. The inner modules in the 

SC_MODULE(controller) have internal processes that are also registered processes using 

SC_THREADS. 

With the top most structure of the SystemC Model it is possible to show the 

organization of the SystemC files for the framework. Figure 30 depicts the C++ files and their 

hierarchy within the SystemC Model. For each logic equation and output port we have a 

instantiated SC_MODULE. Each module represents a new C++ header file represented with a 

shaded square. 
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Figure 29 - System implementation. 

 

 
Source: BUTZKE, F.S. 

 

Figure 30 - System implementation C++ classes. 

 
Source: BUTZKE, F.S. 
 

In Figure 30 we have seen that there is a specific header for dealing with delays. It is 

the delays.h file. This header represents the bound between the maximum and minimum 

values that the gate delays may have as well as the delay of the reset stage. For instance, 

Figure 31 shows the content of the header file. For example, at line 10 it is shown the 

maximum delay for the AOI33 gate.  

For each process within each module, the processes delays will be generated by a 

random function that will return a value between the _MAX_ and _MIN_ for every delay 

constraint. Those delays represent arbitrary delays, but they could represent the actual delays 

caused by the gate capacitances in the designs. 
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Figure 31 - Content of delay.h header file. 

 

 
Source: BUTZKE, F.S. 

 

5.2 Controller Module Organization 

This subsections starts by presenting the controller internal modules. Figure 32 shows 

the four top modules that compose the controller module. In the implementation there are 

exactly one SC_MODULE for each one of the boxes.  

Within each, there are the processes, implemented as SC_THREADS that simulate 

their internal behavior. For example, the module LA has four processes: AOI32, NOR2, 

wire_LA_ and wire_fb. There is exactly one process for each one of the internal components 

in LA. AOI32 represents the AOI32 complex gate, NOR2 represents the output/reset gate. 

wire_LA_ is the output from the AOI32 and wire_fb is the LA that is feedback to the circuit. 

Each one of this elements will have a assigned and random delay in every round. 

 

  



55 

 

Figure 32 - SC_MODULES organization LA, en, RR, Z. 

 

 
Source: BUTZKE, F.S. 

 

Figure 33 depicts the controller top module. It shows the boxes, SC_MODULES, for 

each one of the output logic equations, as well as two processes that simulate inverters and a 

set of processes that simulate wires. The inverters, INV_LR and INV_RA, are also processes 

running on the controller top module. The wire processes wire_seg model the many wire 

connections between the INV_LR, INV_RA and the SC_MODULES LA, RR, en and Z. 

When there is a forking in some wire, there will be a wire process for each one of them, 

meaning that the same signal may have different timings within the controller because of its 

forks. Figure 34 represents the implementation of the SC_THREAD that implements the 

INV_RA thread. Inside the controller and the inner SC_MODULES, the delay in wires is 

modeled as a buffers gate, thus is very similar to the INV_RA thread but does not model the 

inversion behavior.  
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Figure 33 - SC_MODULES organization top. 

 

 
Source: BUTZKE, F.S. 

 

Figure 34 - INV_RA SC_THREAD. 

 

 
Source: BUTZKE, F.S. 

 

Finally, the controller top level is shown with its inner channels, inverters and modules 

all connected together. The top module is shown in Figure 35. Within the figure is possible to 

analyse different things: i) With exception of LA and z0 channels, all the others have some 

sort of wire forks. ii) ~RA and LR both have three wire forks. iii) Modules RR and LA do not 

produce their complement signal. iv) Even though the output from RR, LA and en are next to 

their respective output ports, the wire connections between them are also registred processes 

in SystemC. 
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Figure 35 - Top module SC Controller with connections. 

 

 
Source: BUTZKE, F.S. 

 

Figure 35 has shown the connections between modules inside 

SC_MODULE(controller) class. It gives a great overview and idea of the magnitude and 

complexity of wire connections and delays that are involved within a design.  

 

5.3 Testbench Module Organization 

The testbench has two processes: sink and source. The stimulus testbench is composed 

by two runs. Each run represents a different pipeline behavior. Figure 36 represents the BM 

state diagram presented in the case study development. Here the transitions were omitted to 

ease the reading. Figure 36a and 36b represents both behaviors. In the first the BM state 

machine is going to test the least concurrent flow: 𝐿𝑅 ≼ 𝐿𝐴 ≼ 𝑅𝑅 ≼ 𝑅𝐴.  

The second run, places the controller in the most concurrent environment where the 

left channel is at a different phase compared to the right channel, meaning that it requests a 

new communication without the right channel being ready.  
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Figure 36 - Testbench stimulus. 

 
Source: BUTZKE, F.S. 

 

The sink process is responsible for consuming the data that the output channels of the 

controller models are sending: RR, LA and en. While the source thread represents the 

stimulus that the controller will receive: LR, RA and rst.  

All ports have the same name as their respective channels and the channels represent 

the controller ports. Thus, the port naming convention for the testbench is actually the name 

of the port of the controller. 

The sink thread actually is divided in two processes. The testbench implements a sink 

thread for the RR port and a thread for the LA port. Both threads are programed in a way that 

they act independently from each other.  

 The source thread is presented in the Figure 37. The source thread algorithm is 

executed only once at the start of the simulation. The only attribute of this thread is to ensure 

that the controller is in its initial state. 

The sink thread that represents the right channel, sink_rr, is the responsible for 

stopping the current simulation. It checks when the simulation has reached the limit of tokens 

that were transmitted along the pipeline. In addition, it signals to sink_la that RA have been 

lowered and thus allowing the sink_la to produce new requests while in the least concurrent 

environment. 
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Figure 37 - Source thread. 

 

 
Source: BUTZKE, F.S. 

 

Sink_la is also important. It controls the both runs within a round. It starts with the 

least concurrent environment and then executes a predefined number of communication 

exchanges with the controller, half of the number of tokens exchanged by the round, and then 

changes the run setup to the most concurrent. 

 

5.4 General Features 

In this subsection we describe how the verification environment generates the output 

reports and data as well as the metrics it uses for detecting errors and warnings. 

When the design is first created, there is a limit of number of communication 

exchanges that are going to be completed by the testbench. The limit represents how many 

data exchanges will be simulated within the controller. Therefore, the first error metric is 

whether the number of communication realized is the same as the limit. In case it presents a 

different value the current round of simulation is stopped and a new round starts, reporting the 

error. This may be caused by a deadlock in the design, where no transitions happened since 

the controller state machine is in a state it cannot change. 

The secondary verification metrics are the comparison of some event counter:𝐿𝑅 ↓==

𝑅𝐴 ↑ & 𝑅𝑅 == 𝐿𝐴. 

If any of them assert false, then the current round has an error. The error may be a 

glitch that occurred making the AFSM to lose its internal state and send an output more than 

once. Other possible cause is that the communication is too fast. Figure 38 depicts the 

algorithm that is responsible for returning whether the round had the expected execution 

metrics or not. Line 16 shows the logic expression representing the number of tokens 

exchanged and the comparison between the number of iteration over each channel. If any one 

of them asserts false, the current controller setup is considered invalid.  
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Figure 38 - Error detection algorithm. 

 

 
Source: BUTZKE, F.S. 

 

In addition, the simulation environment registers two SC_THREADS within each 

module to verify whether the output is undefined, X or glitching. The threads are: 

check_output_x and check_output_glitching. The former checks the output state after every 

input signal has changed. It is like an always block with all signals that represent the module 

being the sensitive list. This represent an error since the output function cannot assume 

undefined state after the reset. The check_output_gltiching thread checks the changes in the 

output value after the input ports have changed. If the output changes more than once after an 

input change, there is a hazard.  

Figure 39 shows the code for detecting whether the output is glitching or not. Lines 1-

5 shows the member function that is registered as a SC_THREAD. And lines 7-26 represent 

the actual verification function. Basically we check if the output changes more than once 

when the module had only one input transition. 

Figure 40 shows the piece of code for detecting the output in an undefined state. Lines 

1-3 represent the member function registration processes. The actual code is from lines 5 

through 15. The code checks the output state after each transition on it. If it asserts an 

undefined state after the reset period then an error is flagged. 
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Figure 39 - Algorithm for checking if the output is glitching. 

 

 

Source: BUTZKE, F.S. 

 

Figure 40 - Algorithm for checking the output state. 

 

 

Source: BUTZKE, F.S. 

 

After every round, the testbench will return the value of 1 whether there was a 

malfunction or 0, otherwise. Then, the Makefile script is responsible for the sum of all return 

values for all simulation rounds. In the end of the simulation the script will produce an output 

with the total number of runs and the total errors. 
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Makefile script is the responsible for coordinating the execution of the rounds and 

organizing the data reports. The piece of code that the script executes while in simulation is 

presented in Figure 41. Line 5 controls the loop and breaks it when the round counter, $$i, is 

greater than the number of rounds. Then lines 6-10 represent the iterations for each round. 

Line 8 executes the program that is the SystemC Module and output the round log to a log 

file. Line 9 represents the error counter. It sums the return value of the previous command and 

add to the total_errors variable. Then the iteration counter is incremented in line 10. 

 

Figure 41 - Makefile script. 

 
Source: BUTZKE, F.S. 

 

The set of warning messages verifies whether the LA happens before en port closes 

the latch. In the framework environment it represents a warning since the designer may add 

delays to LA to ensure it happens at the same time or after en.  Figure 42 shows the piece of 

code that detects if LA happens before en closes the latch. Line 6 shows when that 

verification is accomplished, if en is not 0 it means it is still high even though LA has 

acknowledged the communication. 

 

Figure 42 - Algorithm for generating a latch hold time warning. 

 

Source: BUTZKE, F.S. 
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The metrics that we have adopted in order to verify the design for every round are the 

Total Delay and Protocol Latency.  

The total delay represent the sum of the delays for modules inside the controller. The 

protocol latency in the other hand, measures the timing average of the transitions 𝑙𝑟 ↓ 𝑙𝑎 ↓ and 

𝑟𝑎 ↑ 𝑟𝑟 ↓. Those transitions are used since when 𝑙𝑟 ↓there is only one possible outcome from 

the controller that is 𝑙𝑎 ↓. While when 𝑟𝑎 ↑the only possible output is 𝑟𝑟 ↓. The average of 

this delay represents the real delay of the controller, since they represent the communication 

speed in both channels independently. 

Once the simulation is completed there exists some report files that are generated by 

SystemC. The main files are error.log and simulation.log.  Error.log keeps track of the errors, 

warnings and unexpected behaviors. Simulation.log displays the delays assigned for each 

wire/gate within the round as well as the metrics and general information for validation 

purposes.  Figure 43 show the syntax of the simulation.log (a) and error.log (b) files. 

 

Figure 43 - Log files. 

 

 
Source: BUTZKE, F.S. 
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In addition, besides textual reports, the framework provides a set of waveforms. It 

traces all channels for every module in the controller hierarchy. Thus, we can verify visually 

glitches and whether the protocol is working or not.  

 

5.5 Summary 

Finally, this section has presented the proposed environment. We have seen the 

overview of the framework as well as how controller and testbench modules are organized. In 

the last subsection it was presented the concept of error and warning as well as the metrics the 

proposed work implements. 
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6 RESULTS 

This section presents the results this thesis has obtained. Two main simulations have 

been setup. For all simulations that use random gate delays, the following parameters are 

default:  

● Number of Runs per Round: 2.  

● Number of Tokens per Run: 3. 

 

6.1 Simulation 1 

The first simulation verifies the BM design specifying a bounded gate delay only for 

the fanout of each network. For instance, the NOR gate in the LA network is the only element 

of module LA to have an assigned delay. This represents that all the wires and internal gates 

have zero delay. Figure 44 depicts the setup for the delays in the controller modules. Here 

only the fanout delay is considered while the other gate and wire delays are considered to be 

null. 

 

Figure 44 - Delay model for the modules in first simulation. 

 

Source: BUTZKE, F.S. 

 

Since the output gate delay assume an unique and arbitrary value, there is the need for 

only one round. The simulator output is presented in Figure 45. The simulation output 

presents the phases it is currently running and by the end it presents the error counter 

compared to the total number of rounds. 
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Figure 45 - First simulation output. 

 
Source: BUTZKE, F.S. 

6.2 Simulation 2 

This simulation implemented the random gate delay generator for all wire and gate 

threads. The range of delays used was presented in Figure 31. The presented delays are just a 

Proof of Concept (POC) that any bounded values could be “plugged in” and simulated within 

the framework. Figure 46 shows all sort of timing variables the second simulation is going to 

consider while running the simulation. The figure shows the logic network that represents the 

LA module. All sort of delays are considered to exists in some way. For example the delay 

from an input signal from the time it arrives to the controller until the point it is presented at 

the LA module input ports.  

 

Figure 46 - Delay model for the modules in second simulation. 

 

Source: BUTZKE, F.S. 
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In this simulation the framework will simulate 1000 rounds. When the simulation is 

completed the framework displays the content message shown in Figure 47. It shows that the 

simulator has run 1000 rounds and 81 of them presented some sort of anomaly. Those 

anomalies may be glitches, deadlocks or represents that the AFSM has lost its internal state 

and have produces more RR or LA than LR and RA transitions. 

 

Figure 47 - Second simulation output. 

 
Source: BUTZKE, F.S. 
 

The pie chart presented in Figure 48 depicts the amount of errors compared to the total 

number of rounds. 

 

Figure 48 - Second simulation - percentage of errors chart. 

 
Source: BUTZKE, F.S. 

 

The next output data provided by the tool is shown in Figure 49. It presents the spectre 

of the total gate delays per round of simulations. Each black dot represents a simulation. The 

y-axis represents the total delay for the controller design. The red dash lines represent the 
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standard deviation for the mean of the total delay. The main reason we have presented this 

chart is because it shows that the simulation framework has stimulated a considerable set of 

different controller delays and did not focus in a small set of possible values. 

The last information displayed from the simulation is the chart shown if Figure 50. 

Each plus and times signs represent a given simulation. The plus sign means the simulation 

was a valid. While the times sign represents a fail simulation. In the x-axis we have the 

standard deviation for the delays inside the modules of a controller within a round. It tells 

whether the random generated delays represented a well spaced delays (higher standard 

deviation) or whether it generated only close delays (lower standard deviation). In y-axis we 

present the protocol latency. 

The last chart was intended to show a visual proof that the higher standard deviation of 

the inner gate delays the higher are the chances of the controller to be fail. The set of rounds 

that contain errors are concentrated in the top right corner, meaning that the controllers with a 

high standard deviation within their internal gate delay are likely to have more errors than the 

others that have a average timing for the internal gates and wires. 

Being on the top means that the average protocol latency is high. The reason for this to 

happen is that the modules that are affected by the high delays are the modules that are 

directly connected to the channels. It means that the right and left channels are affected by the 

delays of that controller. Thus the top right means that the inner gate delays have a very 

spaced delays assigned to them and the highest delays are the delays that are from the 

modules responsible for communicating with the neighbor controllers.  
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Figure 49 - Second simulation - simulated gate delays. 

 

Source: BUTZKE, F.S. 

 

Figure 50 - Second simulation - pass x fail rounds. 

 
Source: BUTZKE, F.S. 
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6.3 Discussion 

In this subsection we analyze the obtained results. There were two main simulations 

that have been run for this thesis.  

The first simulation regards to setting a static delay to the end of each SC_MODULE 

that represents a specific function, e.g. LA, where the module only has a fanout delay. Thus, 

for this simulation it is obtained only one result. The result presented in Figure 45 has shown 

a pass simulation. The behavior was expected since only the fanout ports have delays. Hence, 

the wires and inverters that are the fanins of have zero delay and are seen at all gates at the 

same time. 

The second simulation represents the verification environment working at its full 

capacity. For this simulation we prepared a set of 1000 rounds and specified a range of 

possible gate and wire delays that would be specified at random by the simulation kernel to 

the processes.  

The result of this simulation has thrown 81 errors. It means that the number of tokens, 

reqs and acks have not matched. This behavior represents a protocol violation. Thus an error 

is flagged for that particular round and the error counter is increased by 1. 

The chart presented in Figure 49 shows the different set of rounds the controller has 

being simulated. Looking at the graph it is possible to verify that the controllers that are 

assigned with well spaced delays, higher standard deviation, have a concentration of fail 

simulations. This is because having delays with many time units of difference may lead to 

glitches and erroneous state transitions. Also the simulation applies different propagation 

delays for the wires forks. Thus the same signal may be felt by two modules at different times 

causing unexpected behaviors in the design.  

In addition, looking at Figure 50 is possible to trace a trend line or pattern that is the 

higher the delay variation the higher are the chances of errors. Furthemore, the errors are 

concentrated to the top right, if the delay variation increases, increasing the standard 

deviation, the errors are likely to ¨walk" to the top right. 

It is worth to mention that the both simulations were ran to simply ensure the 

simulation environment would work properly. The second simulation had a MIN to MAX 

delay variation more spaced than usual, to simulate extreme variation delays. Since the 

environment does not apply an exhaustive verification errors might occur even though the 

environment might end the simulation with a valid controller. The odds of errors of the 

controller after the verification rely on the probability of errors and cases it did not cover 
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while simulating. The designer should keep in mind that the more rounds he simulates the less 

is the uncovered error probabilities. Thus the 1000 simulations chosen for the second 

simulation cover more cases than it would be covered by 100 simulations. In the other hand 

10000 simulation rounds would cover more cases than 1000 rounds.  

Finally, for the second simulation and its purpose 1000 was the most suitable number 

of rounds since the purpose was to simulate extreme variation environments to check if errors 

would be caught while covering a good portion of the possible variations. 

6.4 Summary 

Even though we have no mechanisms for error correction and detection within the 

proposed environment, the framework has the ability of generating log informations that may 

help the designers in the verification process. It tells which rounds errors have happened as 

well as the exact gate and propagation delays setup, enabling the recreation of the 

environment. In addition, the warning messages aim to be a feedback that the designer receive 

from the simulation telling that some propagation delays are faster than others.  

Finally, the main contribution of this thesis shown that the framework has presented the 

intended behavior and achieved successfully its purpose that was showing whether a 

controller is or is not a valid design. At the end the tool tells whether we had or not an error. It 

also provides the log that help debugging the design.   
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7 CONCLUSION 

The purpose of this thesis is to implement a verification environment for asynchronous 

circuits that enables the verification with random gate and wire delays. The original idea came 

from the feeling that the market is moving towards new design methodologies in a near 

future. This work tries to fit in this growing field of study. It attempts to be a contribution for 

inspiring future designers and to help finding novel testing methodologies. 

This thesis has presented two main sections, Section 4 and 5. They represent the two 

different pieces that were connected in order to make this work a reality. Section 4 presented 

an Asynchronous Pipeline Controller as the case study for this thesis. It represents a design 

methodology starting with an BM state machine down to the technology mapping. Section 5 

presented the verification environment composed of SystemC classes, scripts and support 

tools that enable the verification of the case study proposed in the Section 4. 

The fundamentals and related work were presented in Sections 2 and 3. Section 2 

presents a general introduction to asynchronous circuits and compared this sort of design 

against the current design standard, the synchronous design. Also general guidelines for 

building an asynchronous systems starting with a state machine definition is introduced. In 

addition, many terms and concepts were also introduced. Section 3 presents some related 

work that attempt to accomplish similar objectives in the field of asynchronous circuits. 

Section 5 presented the results of the simulation of the case study within the proposed 

framework. We have seen that the set of output informations (logs, warnings, errors and 

charts) show whether the controller design is valid or not. Thus, they represent the ultimate 

validation and simulation status report. If there is an error within those informations, the the 

controller must be analyzed or restructured to avoid the hazards and errors that occurred. 

7.1 Objectives Check 

● Implement a simulation environment.  

Objective accomplished. Section 5 shows the steps and the proposed framework.  

● Define a case study.  

Objective accomplished. Section 4 presents the specification and design of the 

asynchronous pipeline controller.. 

● Verify a case study using the proposed environment.  

Objective accomplished. We have verified the case study within the framework and 

we have run a simulation containing a thousand rounds. Section 6 presents the results 

of the simulations. 
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7.2 Future Work 

In this subsection we present some topics that would be great case studies or features 

in the framework.  

A possible case study might be the implementation of an array of pipeline controllers. 

They would represent a pipeline design and the focus would be the generation of random 

delays for the individual controllers to verify whether the pipeline presents faults when we 

introduce random gate delays to it. In addition this framework is extensible for other 

asynchronous designs. Since it creates random delays for the inner module through SystemC 

classes, we would have just to model new processes and modules to represent other designs. 

There are some features that were not the focus of the present thesis but would be 

great tool for the proposed framework. The first feature would read a given standard cell 

library and would generate automatically the delays for gates. In addition we could use 

automatic tools for generating the technology mapping that would ease the generation of case 

studies and models that are verified by the environment. 
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8 FINAL THOUGHTS 

Asynchronous circuits represent a design methodology that the author believes is 

going to be in the future designs. This sort of circuits are not becoming popular alone, 

research groups around the World are also researching topics as complex system-on-chips and 

3D circuits. However, if those designs do become popular, they would also need novel ways 

to overcome their problems. Thus asynchronous is again a solution for the technologies that 

are growing at this very instant. 

Asynchronous circuits represent a personal interest of the author. He has decided to 

use his bachelor’s thesis to improve his knowledge in the subject as well as trying to 

contribute with ideas and tools. 

In addition, choosing SystemC as the description language of the framework 

represented a huge challenge for the author. In the undergraduate courses we focus especially 

in VHDL and Verilog hardware description languages. Thus, learning a third syntax gives 

even more academic experience for the author.  

The author is very pleased with the developed framework and the subjects he has 

developed. He thinks the proposed implementation was a great choice for being developed 

and presented as his bachelor's thesis. 
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